A small-molecule oxocarbazate inhibitor of human cathepsin L blocks severe acute respiratory syndrome and ebola pseudotype virus infection into human embryonic kidney 293T cells.
نویسندگان
چکیده
A tetrahydroquinoline oxocarbazate (PubChem CID 23631927) was tested as an inhibitor of human cathepsin L (EC 3.4.22.15) and as an entry blocker of severe acute respiratory syndrome (SARS) coronavirus and Ebola pseudotype virus. In the cathepsin L inhibition assay, the oxocarbazate caused a time-dependent 17-fold drop in IC(50) from 6.9 nM (no preincubation) to 0.4 nM (4-h preincubation). Slowly reversible inhibition was demonstrated in a dilution assay. A transient kinetic analysis using a single-step competitive inhibition model provided rate constants of k(on) = 153,000 M(-1)s(-1) and k(off) = 4.40 x 10(-5) s(-1) (K(i) = 0.29 nM). The compound also displayed cathepsin L/B selectivity of >700-fold and was nontoxic to human aortic endothelial cells at 100 muM. The oxocarbazate and a related thiocarbazate (PubChem CID 16725315) were tested in a SARS coronavirus (CoV) and Ebola virus-pseudotype infection assay with the oxocarbazate but not the thiocarbazate, demonstrating activity in blocking both SARS-CoV (IC(50) = 273 +/- 49 nM) and Ebola virus (IC(50) = 193 +/- 39 nM) entry into human embryonic kidney 293T cells. To trace the intracellular action of the inhibitors with intracellular cathepsin L, the activity-based probe biotin-Lys-C5 alkyl linker-Tyr-Leu-epoxide (DCG-04) was used to label the active site of cysteine proteases in 293T lysates. The reduction in active cathepsin L in inhibitor-treated cells correlated well with the observed potency of inhibitors observed in the virus pseudotype infection assay. Overall, the oxocarbazate CID 23631927 was a subnanomolar, slow-binding, reversible inhibitor of human cathepsin L that blocked SARS-CoV and Ebola pseudotype virus entry in human cells.
منابع مشابه
COVID-19: a hypothesis to prevent SARS-CoV-2 from entering respiratory cells
Coronaviruses (CoVs) are a group of viruses that induce infection in the respiratory and other systems in the human body. There are two coronaviruses that transmitted from animals to humans including severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) (1). The novel coronavirus that appeared at first in Wuhan, China, in December 2019 was named as severe acut...
متن کاملEbola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.
UNLABELLED Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expre...
متن کاملIdiosyncrasies of COVID-19; A Review
The Coronavirus disease 2019, identified by Chinese researchers to be the caused by a novel enveloped betacoronavirus, Severe Acute Respiratory Syndrome Coronavirus- 2 which was first isolated in Wuhan, China has been declared a global pandemic by the world health organization. The virus has several structural proteins that contributed to its pathogenesis such as spikes, membrane, envelop and n...
متن کاملThe evil role of spike in the coronaviruses: structure, function and evolution
1. Lu R, Zhao X, Li J, et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574 2. Zhou P, Tachedjian M, Wynne JW, et al (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 113:2696–2701 . doi: 10.1073/pnas.1518240113 3. Wu A, P...
متن کاملHuman immunodeficiency viral vector pseudotyped with the spike envelope of severe acute respiratory syndrome coronavirus transduces human airway epithelial cells and dendritic cells.
The human severe acute respiratory syndrome coronavirus (SARS-CoV) is a highly infectious virus that causes severe respiratory infections in humans. The spike envelope glycoprotein of SARS-CoV, the main determinant of SARS-CoV tropism, was isolated and used to pseudotype a human immunodeficiency virus (HIV)-based vector. Spike-pseudotyped HIV vector was generated and evaluated in vitro on well-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 78 2 شماره
صفحات -
تاریخ انتشار 2010